Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499326

RESUMO

Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Tumor Rabdoide , Criança , Humanos , Meduloblastoma/genética , Metilação de DNA/genética , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Epigênese Genética/genética , Neoplasias Cerebelares/genética , DNA/metabolismo
3.
CNS Oncol ; 13(1): CNS105, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380555

RESUMO

Atypical teratoid rhabdoid tumors (AT/RT) are rare and highly malignant CNS neoplasms primarily affecting children. Adult cases are extremely uncommon, with only approximately 92 reported. Spinal AT/RT in adults is particularly rare. Here, we present the case of a 50-year-old patient diagnosed with AT/RT of the spine. Initially, they were diagnosed and treated for a spinal ependymoma. However, after 10 years, a recurrence was detected through magnetic resonance imaging (MRI) and the tumor was reclassified as AT/RT. We discuss the significance of SMARCB1 gene mutations in diagnosing AT/RT and describe our unique treatment approach involving surgery, radiation and anti-PD1 therapy in this patient.


Atypical teratoid rhabdoid tumors (AT/RT) are rare and serious cancers that affect the brain and spine, and mostly occur in children. AT/RT are rare in adults, with only about 92 cases reported. Our article tells the story of a 50-year-old patient, who was diagnosed with a spinal tumor, initially classified as an ependymoma. Ten years later, the tumor recurred, and was found on routine surveillance imaging. After pathological examination of the recurrent tumor, it was diagnosed as AT/RT. The initial tissue was re-examined, and the original tumor was reclassified as an AT/RT. We explain why a gene called SMARCB1 is important for diagnosing AT/RT. Additionally, we share details about the treatments utilized: including surgery, radiation, and medicines that stimulate the immune system to kill cancer cells. This case highlights the challenges and treatments for this rare cancer in adults.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Teratoma , Humanos , Pessoa de Meia-Idade , Tumor Rabdoide/diagnóstico por imagem , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Proteína SMARCB1/genética , Teratoma/diagnóstico por imagem , Teratoma/genética , Teratoma/cirurgia
4.
Clin Neuropathol ; 43(1): 2-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37969088

RESUMO

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant tumor of the central nervous system characterized by biallelic inactivation of SWI/SNF chromatin remodeling complex members SMARCB1/INI1 or (rarely) SMARCA4/BRG1. Most high-grade central nervous system lesions showing loss of nuclear SMARCB1 or SMARCA4 protein expression can indeed be categorized as AT/RT. However, some high-grade lesions have been identified, whose clinical and/or molecular features justify separation from AT/RT. Furthermore, other recently described tumor types such as desmoplastic myxoid tumor, SMARCB1-mutant, and low-grade diffusely infiltrative tumor, SMARCB1-mutant, may even manifest as low-grade lesions. Here, we review recent developments in the definition of the molecular landscape of AT/RT and give an update on other rare high- and low-grade SWI/SNF-deficient central nervous system tumors.


Assuntos
Neoplasias Neuroepiteliomatosas , Tumor Rabdoide , Humanos , Proteína SMARCB1/genética , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Sistema Nervoso Central/patologia , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
5.
Eur J Pediatr ; 183(2): 557-567, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019286

RESUMO

This paper aims to explore the epidemiology, clinical characteristics, and prognosis of extracranial malignant rhabdoid tumors (eMRTs) in children. A systematic review and meta-analysis of studies published in PUBMED, MEDLINE, Web of Science, Embase, Cochrane, and China National Knowledge Infrastructure (CNKI) was conducted. The search was limited to studies published between Jan 1, 1990 to Dec 31, 2022, with the last search done on Jan 31, 2023. We identified 496 papers through the literature search, and 12 retrospective cohort studies with 398 patients were included. The pooled age at diagnosis for malignant rhabdoid tumor of the kidney (MRTK) was 10.009 months (95%CI (7.542-12.476)), while extracranial malignant rhabdoid tumor (EERT) was 25.917 months (95%CI (17.304-34.530)). Among the 398 patients with eMRTs, chemotherapy treatment rate (86.8% (95%CI (74.4-96.0%))) was more frequently than radiotherapy treatment (45.4% (95%CI (38.1-52.6%))). The rate of metastasis in all patients was 41.4% (95%CI (33.9-48.9%)), in which the lung metastasis was occupied 70.4% (95%CI (58.0-81.6%)). SMARCB1/INI1 mutation was up to 93.2% (95%CI (81.3-99.8%)). The rate of total surgical resection was 50.4% (95%CI (35.2-65.6%)), while pooled proportion of death in all patients was 68.7% (95%CI (56.9-79.5%)).     Conclusion: EMRTs are highly malignant tumors associated with high mortality rates. The loss of SMARCB1/INI1 gene and the protein expression is observed in the vast majority of eMRTs patients. Patients that suffered MRTK are younger than patients with extrarenal EERT and are more prone to lung metastasis, but there is no significant difference in overall survival, possibly due to the higher rate of R0 resection of primary tumors in MRTK.     Trial registration: The study was registered on PROSPERO with registration number CRD42023400985. What is Known: • Malignant rhabdoid tumor (MRT) is a rare and highly malignant tumor that may originate from embryonic stem cells. The incidence of MRT is exceptionally low, estimated at 0.00006%. • Malignant rhabdoid tumor of the kidney (MRTK) and extrarenal extra-cranial malignant rhabdoid tumor (EERT) tend to manifest between 11 to 18 months of age, with a 5-year survival rate of approximately 17%-36%. What is New: • There is no comprehensive meta-analysis or large-scale case series that reported to systematically introduce the eMRTs clinic outcome and prog-nosis based on largely pooled data. • This study performed a meta-analysis through an extensive literature search and clinical data analysis in order to mainly explore the clinical characteris-tics and prognosis of eMRTs, improving the understanding of eMRTs in children..


Assuntos
Neoplasias Renais , Neoplasias Pulmonares , Tumor Rabdoide , Neoplasias de Tecidos Moles , Criança , Humanos , Lactente , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/terapia , Tumor Rabdoide/genética , Estudos Retrospectivos , Neoplasias Renais/terapia , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética
6.
Genes Chromosomes Cancer ; 63(1): e23195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37548271

RESUMO

Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.


Assuntos
Neoplasias Encefálicas , Transtornos Cromossômicos , Tumor Rabdoide , Teratoma , Criança , Feminino , Masculino , Humanos , Adulto Jovem , Adulto , Lactente , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Neoplasias Encefálicas/genética , Mutação em Linhagem Germinativa , Translocação Genética , Teratoma/genética , Teratoma/patologia
7.
Nat Commun ; 14(1): 7762, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040699

RESUMO

Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.


Assuntos
Tumor Rabdoide , Humanos , Criança , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Fatores de Transcrição/genética , Mutação , Regiões Promotoras Genéticas/genética , Carcinogênese/genética
8.
J Exp Clin Cancer Res ; 42(1): 346, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124207

RESUMO

BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Animais , Pré-Escolar , Humanos , Camundongos , Apoptose , Neoplasias do Sistema Nervoso Central/metabolismo , Reparo do DNA , Inibidores Enzimáticos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo
9.
J Med Case Rep ; 17(1): 479, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974295

RESUMO

BACKGROUND: SMARCB1, also known as INI1, is a member of a large protein complex involved in chromatin remodeling and thus the regulation of gene expression. It is located on chromosome 22q11.2. SMARCB1 tumors have been found in various locations, including the sinonasal region, gastrointestinal tract, central nervous system (in atypical teratoid and rhabdoid tumors), and perirenal region (in malignant rhabdoid tumors) in both adults and children. CASE PRESENTATION: We describe here the first case in the literature of an INI1-deficient neck carcinoma without a primary tumor managed with surgical therapy and neck dissection in a young Caucasian woman of 29 years old, followed by chemotherapy before radiotherapy, with regional control after 18 months of follow-up. Histologic analysis showed an undifferentiated carcinoma without glandular or epidermoid differentiation. Biomolecular analysis of the tumor revealed a homozygous deletion of the SMARCB1 gene on RNA sequencing. CONCLUSION: Research of INI1 deletion should be performed for undifferentiated carcinoma of young patients because of possibilities of molecular therapies such as autophagy inhibitors or proteasome inhibitors could be used in clinical trials.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Tumor Rabdoide , Adulto , Criança , Feminino , Humanos , Tumor Rabdoide/genética , Homozigoto , Deleção de Sequência , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Carcinoma/genética , Carcinoma/patologia , Neoplasias de Cabeça e Pescoço/genética , Biomarcadores Tumorais/genética
11.
Nat Commun ; 14(1): 6669, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863903

RESUMO

Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.


Assuntos
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/genética , Multiômica , Proteína SMARCB1/genética , Fatores de Transcrição/genética , Neoplasias Encefálicas/genética , Diagnóstico por Imagem , Teratoma/patologia , Proteínas Hedgehog/genética
12.
Fetal Pediatr Pathol ; 42(6): 825-844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548233

RESUMO

Objective: Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Methods: Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data. Results: Candidate miRNAs and mRNAs with high accuracy (AUC: 97%/93% and 94%/97%, respectively) could differentiate the WT and RT classes in training and test data. Let-7a-2 and C19orf24 were identified in the WT, while miR-199b and RP1-3E10.2 were detected in the RT by analysis of Association Rule Mining. Conclusion: The application of the machine learning methods could identify mRNA/miRNA patterns to discriminate WT from RT. The identified miRNAs/mRNAs panels could offer novel insights into the underlying molecular mechanisms that are responsible for the initiation and development of these cancers. They may provide further insight into the pathogenesis, prognosis, diagnosis, and molecular-targeted therapy in pediatric renal tumors.


Assuntos
Neoplasias Renais , MicroRNAs , Tumor Rabdoide , Tumor de Wilms , Criança , Humanos , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Tumor de Wilms/diagnóstico , Tumor de Wilms/genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/genética , Prognóstico
13.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446319

RESUMO

The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.


Assuntos
Proteínas de Ligação a DNA , Tumor Rabdoide , Humanos , Proteínas de Ligação a DNA/genética , Imunoterapia Adotiva , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Tumor Rabdoide/patologia
14.
Acta Neuropathol ; 146(3): 527-541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37450044

RESUMO

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences.


Assuntos
Variações do Número de Cópias de DNA , Progressão da Doença , Epigênese Genética , Perfilação da Expressão Gênica , Recidiva , Tumor Rabdoide , Teratoma , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 10/genética , Estudos de Coortes , Células Dendríticas , Variações do Número de Cópias de DNA/genética , Metilação de DNA , Histologia , Mitose , Tumor Rabdoide/classificação , Tumor Rabdoide/genética , Tumor Rabdoide/imunologia , Tumor Rabdoide/patologia , Análise de Sequência de RNA , Teratoma/classificação , Teratoma/genética , Teratoma/imunologia , Teratoma/patologia , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica/genética
15.
Pediatr Hematol Oncol ; 40(7): 629-642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519026

RESUMO

Atypical teratoid/rhabdoid tumor (AT/RT) is a rare aggressive central nervous system tumor that typically affects children under three years old and has poor survival with a high risk for neurologic deficits. The primary purpose of this study was to successfully treat the disease and delay or avoid whole-brain radiotherapy for children with AT/RT. A retrospective analysis was performed for six children diagnosed with AT/RT and treated with multimodal treatment at a single institute between 2014 and 2020. Furthermore, germline SMARCB1 aberrations and MGMT methylation status of the tumors were analyzed. One patient who did not receive a modified IRS-III regimen replaced with ifosphamide, carboplatin, and etoposide (ICE) in induction chemotherapy was excluded from this analysis. Five patients who received ICE therapy were under three years old. After a surgical approach, they received intensive chemotherapy and high-dose chemotherapy with autologous peripheral blood stem cell transplantation (HDCT/autoPBSCT) followed by intrathecal topotecan maintenance therapy. Three patients underwent single HDCT/autoPBSCT, and the other two received sequential treatment. Two patients with germline SMARCB1 aberrations and metastases died of progressive AT/RT or therapy-related malignancy, while 3 with localized tumors without germline SMARCB1 aberrations remained alive. One survivor received local radiotherapy only, while the other two did not undergo radiotherapy. All three surviving patients were able to avoid whole-brain radiotherapy. Our results suggest that AT/RT patients with localized tumors without germline SMARCB1 aberrations can be rescued with multimodal therapy, including induction therapy containing ICE followed by HDCT/autoPBSCT and intrathecal topotecan maintenance therapy without radiotherapy. Further large-scale studies are necessary to confirm this hypothesis.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Teratoma , Criança , Humanos , Lactente , Pré-Escolar , Topotecan/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Terapia Combinada , Carboplatina , Etoposídeo/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ifosfamida/uso terapêutico , Encéfalo/patologia , Teratoma/genética , Teratoma/terapia
16.
Adv Exp Med Biol ; 1405: 225-252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37452940

RESUMO

The 2016 WHO classification of tumors of the central nervous system affected importantly the group of CNS embryonal tumors. Molecular analysis on methylome, genome, and transcriptome levels allowed better classification, identification of specific molecular hallmarks of the different subtypes of CNS embryonal tumors, and their more precise diagnosis. Routine application of appropriate molecular testing and standardized reporting are of pivotal importance for adequate prognosis and treatment, but also for epidemiology studies and search for efficient targeted therapies. As a result of this approach, the term primitive neuroectodermal tumor-PNET was removed and a new clinic-pathological entity was introduced-Embryonal tumor with multilayered rosettes (ETMR). The group of CNS embryonal tumors include also medulloblastoma, medulloepithelioma, CNS neuroblastoma, CNS ganglioneuroblastoma, atypical teratoid/rhabdoid tumor (ATRT) and their subtypes. This chapter will focus mainly on ETMR and ATRT. Embryonal tumors with multilayered rosettes and the atypical teratoid/rhabdoid tumors are undifferentiated or poorly differentiated tumors of the nervous system that originate from primitive brain cells, develop exclusively in childhood or adolescence, and are characterized by a high degree of malignancy, aggressive evolution and a tendency to metastasize to the cerebrospinal fluid. Their clinical presentation is similar to other malignant, intracranial, neoplastic lesions and depends mainly on the localization of the tumor, the rise of the intracranial pressure, and eventually the obstruction of the cerebrospinal fluid pathways. The MRI image characteristics of these tumors are largely overlappingintra-axial, hypercellular, heterogeneous tumors, frequently with intratumoral necrosis and/or hemorrhages. Treatment options for ETMR and ATRT are very restricted. Surgery can seldom achieve radical excision. The rarity of the disease hampers the establishment of a chemotherapy protocol and the usual age of the patients limits severely the application of radiotherapy as a therapeutic option. Consequently, the prognosis of these undifferentiated, malignant, aggressive tumors remains dismal with a 5-year survival between 0 and 30%.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Cerebelares , Neoplasias Embrionárias de Células Germinativas , Tumores Neuroectodérmicos Primitivos , Tumor Rabdoide , Adolescente , Humanos , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/terapia , Neoplasias Encefálicas/patologia , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patologia
17.
Adv Exp Med Biol ; 1405: 405-420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37452947

RESUMO

Embryonal tumors (ETs) of the central nervous system (CNS) comprise a large heterogeneous group of highly malignant tumors that predominantly affect children and adolescents. Currently, the neoplasms classified as ET are the medulloblastoma (MB), embryonal tumors with multilayered rosettes (ETMR), medulloepithelioma (ME), CNS neuroblastoma (NB), CNS ganglioneuroblastoma (GNB), atypical teratoid/rhabdoid tumors (AT/RT), and CNS embryonal tumors with rhabdoid features. All these tumors are classified as malignant-grade IV neoplasms, and the prognosis of patients with these neoplasms is very poor. Currently, except for the histological classification of MB, the recently utilized WHO classification accepts a novel molecular classification of MBs into four distinct molecular subgroups: wingless/integrated (WNT)-activated, sonic hedgehog (Shh), and the numerical Group3 and Group 4. The combination of both histological and genetic classifications has substantial prognostic significance, and patients are categorized as low risk with over 90% survival, the standard risk with 75-90% survival, high risk with 50-75% survival, and very high risk with survival rate lower than 50%. Children under three years are predominantly affected by AT/RT and represent about 20% of all CNS tumors in this age group. AT/RT is typically located in the posterior fossa (mainly in cerebellopontine angle) in 50-60% of the cases. The pathogenesis of this neoplasm is strongly associated with loss of function of the SMARCB1 (INI1, hSNF5) gene located at the 22q11.23 chromosome, or very rarely with alterations in (SMARCA4) BRG1 gene. The cells of this neoplasm resemble those of other neuronal tumors, and hence, immunochemistry markers have been utilized, such as smooth muscle actin, epithelial membrane antigen, vimentin, and lately antibodies for INI1. ETMRs are characterized by the presence of ependymoblastic rosettes formed by undifferentiated neuroepithelial cells and neuropil. The tumorigenesis of ETMRs is strongly related to the amplification of the pluripotency factor Chr19q13.41 miRNA cluster (C19MC) present in around 90% of the cases. Additionally, the expression of LIN28A is a highly sensitive and specific marker of ETMR diagnosis, as it is overexpressed in almost all cases of ETMR and is related to poor patient outcomes. The treatment of patients with ETs includes a combination of surgical resection, radiotherapy (focal or craniospinal), and chemotherapeutic agents. Currently, there is a trend to reduce the dose of craniospinal irradiation in the treatment of low-risk MBs. Novel targeted therapies are expected in the treatment of patients with MBs due to the identification of the main driver genes. Survival rates vary between ET types and their subtypes, with ganglioneuroblastoma having over 95% 5-year survival rate, while ATRT is probably linked with the worst prognosis with a 30% 5-year survival rate.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Ganglioneuroblastoma , Meduloblastoma , Neoplasias Embrionárias de Células Germinativas , Tumores Neuroectodérmicos Primitivos , Tumor Rabdoide , Neoplasias da Medula Espinal , Criança , Adolescente , Humanos , Pré-Escolar , Proteínas Hedgehog/metabolismo , Encéfalo/metabolismo , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patologia , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Neoplasias Encefálicas/patologia , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cancer Med ; 12(15): 16323-16336, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317642

RESUMO

Genetic information encoded by DNA is packaged in the nucleus using the chromatin structure. The accessibility of transcriptional elements in DNA is controlled by the dynamic structural changes of chromatin for the appropriate regulation of gene transcription. Chromatin structure is regulated by two general mechanisms, one is histone modification and the other is chromatin remodeling in an ATP-dependent manner. Switch/sucrose nonfermentable (SWI/SNF) complexes utilize the energy from ATP hydrolysis to mobilize nucleosomes and remodel the chromatin structure, contributing to conformational changes in chromatin. Recently, the inactivation of encoding genes for subunits of the SWI/SNF complexes has been documented in a series of human cancers, accounting for up to almost 20% of all human cancers. For example, human SNF5 (hSNF5), the gene that encodes a subunit of the SWI/SNF complexes, is the sole mutation target that drives malignant rhabdoid tumors (MRT). Despite remarkably simple genomes, the MRT has highly malignant characteristics. As a key to understanding MRT tumorigenesis, it is necessary to fully examine the mechanism of chromatin remodeling by the SWI/SNF complexes. Herein, we review the current understanding of chromatin remodeling by focusing on SWI/SNF complexes. In addition, we describe the molecular mechanisms and influences of hSNF5 deficiency in rhabdoid tumors and the prospects for developing new therapeutic targets to overcome the epigenetic drive of cancer that is caused by abnormal chromatin remodeling.


Assuntos
Tumor Rabdoide , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteínas Cromossômicas não Histona/genética , Nucleossomos , DNA , Trifosfato de Adenosina , Montagem e Desmontagem da Cromatina
19.
J Pathol ; 260(4): 368-375, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316954

RESUMO

Epithelioid sarcoma is a rare and aggressive mesenchymal tumour, the genetic hallmark of which is the loss of expression of SMARCB1, a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex. Hampered by its rarity, epithelioid sarcoma has received little research attention and therapeutic options for this disease remain limited. SMARCB1-deficient tumours also include malignant rhabdoid tumour, atypical teratoid and rhabdoid tumour, epithelioid malignant peripheral nerve sheath tumour, and poorly differentiated chordoma. Histologically, it can be challenging to distinguish epithelioid sarcoma from malignant rhabdoid tumour and other SMARCB1-deficient tumours, whereas methylation profiling shows that they represent distinct entities and facilitates their classification. Methylation studies on SMARCB1-deficient tumours, although not including epithelioid sarcomas, reported methylation subgroups which resulted in new clinical stratification and therapeutic approaches. In addition, emerging evidence indicates that immunotherapy, including immune checkpoint inhibitors, represents a promising therapeutic strategy for SMARCB1-deficient tumours. Here, we show that some epithelioid sarcomas share methylation patterns of malignant rhabdoid tumours indicating that this could help to distinguish these entities and guide treatment. Using gene expression data, we also showed that the immune environment of epithelioid sarcoma is characterised by a predominance of CD8+ lymphocytes and M2 macrophages. These findings have potential implications for the management of patients with epithelioid sarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Tumor Rabdoide , Sarcoma , Humanos , Proteínas de Ligação a DNA/genética , Proteínas Cromossômicas não Histona/genética , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Tumor Rabdoide/metabolismo , Imuno-Histoquímica , Proteína SMARCB1/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/metabolismo
20.
Eur J Pharmacol ; 951: 175747, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142086

RESUMO

Malignant rhabdoid tumor of the kidney (MRTK) has an inferior prognosis and is insensitive to radiotherapy and chemotherapy. Search for novel, potent medicinal agents is urgent. Herein, data on the gene expression and clinical characteristics of malignant rhabdoid tumors (MRT) were retrieved from the TARGET database. Prognosis-related genes were identified by differential analysis and one-way cox regression analysis, and prognosis-related signalling pathways were identified by enrichment analysis. The prognosis-related genes were imported into the Connectivity Map database for query, and BKM120 was predicted and screened as a potential therapeutic agent for MRTK. A combination of high-throughput RNA sequencing and Western blot verified that the PI3K/Akt signaling pathway is associated with MRTK prognosis and is overactivated in MRTK. Our results outlined that BKM120 inhibited the proliferation, migration, and invasion ability of G401 cells and induced apoptosis and cell cycle G0/G1 phase arrest. In vivo, BKM120 inhibited tumor growth and had no significant toxic side effects. Western blot and immunofluorescence results confirmed that BKM120 could reduce the expression of PI3K and p-AKT, critical proteins of the PI3K/Akt signaling pathway. BKM120 inhibits MRTK by inhibiting PI3K/Akt signalling pathway to induce apoptosis and cell cycle G0/G1 phase arrest, which is anticipated to give the clinical treatment of MRTK a new direction.


Assuntos
Neoplasias Renais , Tumor Rabdoide , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Linhagem Celular Tumoral , Apoptose , Fase G1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...